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Abstract

We discuss how Seraphis, a transaction protocol abstraction for p2p electronic cash sys-

tems, may be implemented. Specifically, we specify a set of elliptic curve generators, describe

a concrete balance proof, explain how coinbase enotes and transaction fees may be integrated

into a Seraphis transaction protocol, show how the addressing scheme Jamtis satisfies require-

ments set by the Seraphis abstraction, provide recommendations for optimizing a transaction

protocol design, and explore nuances related to the process of constructing transactions. We

also introduce a comprehensive set of information proofs for Jamtis-based transactions.

1 Introduction

Seraphis [9] is a transaction protocol abstraction, and hence does not specify any concrete imple-

mentation details. To that end, we discuss how to implement various components of a Seraphis-

compatible protocol. The highlights of our design recommendations are as follows.

1. Jamtis [18] is a Seraphis-compatible addressing scheme that enables full balance recovery

without the master spend key, supports a third-party balance recovery process with substan-

tially better privacy than third-party scanning with CryptoNote view keys, eliminates the

‘duplicate onetime address’ and ‘subaddress look-ahead’ issues that plague the CryptoNote

addressing scheme, and provides conditional forward-secrecy against a DLP-solver (e.g. quan-

tum adversary).

2. Membership proofs may be constructed after a transaction has been signed. This makes

multisignatures simpler and more robust, and enables ‘transaction chaining’ where it is

possible to construct a partial transaction B that spends an enote from transaction A before

A has been added to the ledger (Section 10).

Appendix A presents a comprehensive set of information proofs for Jamtis-based Seraphis transac-

tions (e.g. address ownership proofs, reserve proofs, etc.). Appendix B presents a flexible Schnorr-

like proof for key matrices constructed from sets of private keys and base keys, which is used in

the information proofs.

∗License: public domain.
†This is just a draft, so it may not always be available wherever it is currently hosted.
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2 Preliminaries

2.1 Public parameters

1Let G be a cyclic group of prime order l > 3 in which the discrete logarithm problem is hard and

the decisional and inverse decisional Diffie-Hellman assumptions hold, and let Zl be its scalar field.

Let H : [0, 1]∗ and Hn[0, 1]∗ → Zl be cryptographic hash functions. We add a subscript to hash

functions, such as Hsrc, in lieu of domain-separating explicitly; any domain-separation method

may be used in practice (e.g. an ASCII string corresponding to a domain-separated use case, such

as H(“sender receiver secret” || [hash input])).

We define four distinct generators G,H,X,U ∈ G that map to generators from the Seraphis paper.

The generator G should be the ‘main’ generator of G according to the relevant convention, and

the other generators should be produced using public randomness.

G = G0 = H0

H = H1

X = G1

U = G2 = J

We also define an isometric cipher and decipher functions Ciph and Deciph [terminology? nota-

tion?].

All public parameters are assumed to comprise a global reference string known to all players. For

readability, we generally exclude explicit reference to public parameters in algorithm definitions

and Fiat-Shamir transcript hashes.

2.2 Notation

• We use additive notation for group operations on G. This means, for example, that the

binary group operation between G and H is denoted G+H.

• This paper contains no exponentiation unless explicitly stated. Superscripts such as the o in

ko are in most cases merely for descriptive purposes and have no mathematical significance.

1 Parts of this section were copied mostly verbatim from the Triptych preprint [15].
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• For group element P and scalar x ∈ Zl, xP and x ∗ P both indicate scalar multiplication.

The use of asterisks (∗) in some places but not others is meant to aid visual clarity where

appropriate (usually when multiplying by a parenthesized scalar or by a scalar that has a

superscript).

• Modular multiplicative inverse group operations use the notation (1/x) ∗ P .

• Tuples are indicated with brackets, e.g. [A,B,C]. To avoid confusion, we always explicitly

refer to tuples as tuples wherever they appear (e.g. ‘the tuple [A,B,C]’).

2.3 Squashed enote model

We use {this syntax} to highlight text that is specific to the Seraphis squashed enote model.

3 Applying the generators

Using the generators defined in Section 2.2, an enote will look like this:

• Amount commitment: C = xG+ aH

• Address: Ko = k0 ∗G+ k1 ∗X + k2 ∗ U

• Memo: An arbitrary memo field.

We use Jamtis to specify how an enote should be constructed in Section 8.3.

An enote-image will look like this:

• Masked commitment: C ′ = (tc + x) ∗G+ aH

• Masked address: K ′ = (tk + k0) ∗G+ k1 ∗X + k2 ∗ U

• Key image2: K̃ = (k2/k1) ∗ U

4 Balance proofs

For amount balance proofs, we use a non-zero ‘blinding factor remainder’ pr, and publish it inside

transactions.3 Using pr > 0 avoids requiring interdependency between enote images. Any range

proof construction may be used that satisfies [todo: xyz requirements] (e.g. Bulletproofs+ [2]).

2 A key image is a style of ‘linking tag’ characterized by being derived from an enote’s address key.
3 An alternative to adding pr to transactions explicitly would be creating a signature on the public key prG (as

done in Lelantus-Spark [7]). This can prevent problem 2 from Section 4.3. However, if proof structures resilient to
problem 2 are used, we do not think signing prG offers any advantages (problem 1 is unrelated to pr).
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4.1 Constructing a balance proof

Suppose a transaction spends j ∈ 1, ...,m old enotes and creates t ∈ 1, ..., p new ones. A balance

proof involves the following steps.

1. Let the masked commitments in enote-images be denoted C ′
j = vc,jG + ajH. Let the com-

mitments in new enotes be denoted Ct = ytG+ btH.

2. For j ∈ 1, ...,m, randomly select vc,j ∈R Zl. For t ∈ 1, ..., p, randomly select yt ∈R Zl.

3. Compute pr = [
∑m

j=1 vc,j ]− [
∑p

t=1 yt].

4. Produce a range proof for each new amount commitment Ct {and each masked amount

commitment C ′
j} for the allowed amount range [0, 2z).4

Record all {C ′
j , Ct, pr, range proofs} in a transaction.

Note: As required by Seraphis, the values tc,j = vc,j − xj will be uniformly distributed because

vc,j are generated randomly and xj are former yt values that were also randomly generated.

4.2 Verifying a balance proof

To verify a balance proof, perform the following steps.

1. Check that
∑

C ′
j ==

∑
Ct + pr holds.

2. Check that each Ct {and each C ′
j} has a valid range proof.

If the above checks hold for the transaction, then, within a security factor, there must be a balance

on generators G and H in the two commitment sets (input enote-image commitments and output

enote commitments).

In conclusion, the amounts must balance between input and output enotes.

4.3 Sender-receiver anonymity

If a transaction only has one input (m = 1) and all its outputs’ yt are known by an observer (e.g.

because they received all enotes produced by the transaction), then the observer will know the

value vc,1 =
∑p

t=1 yt + pr.

However, even if the observer is the original sender of the enote that the transaction author is

spending, they won’t necessarily know any more information about the transaction’s input than

if they weren’t the original sender.

4 The value z must be lower than the order l of G minus a security factor k < log2(l): 0 ≤ z < log2(l)− k.
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First note that the observer, by knowing all yt, will presumably also know the total amount output

by the transaction (assuming they know the transaction fee, if relevant), and hence will know the

input amount a1.

Second, even if they were the original sender, the input could have been sent to the transaction

author by someone else. Despite knowing both x1 and vc,1, the observer has no way to know if the

real input actually had a different blinding factor x′1, since tc is uniformly distributed at random.

There are two problems to consider.

1. If the amount a1 is ‘unusual’ (i.e. unlikely to have been created by someone else), then the

observer can guess with high probability of success that they created the enote being spent,

assuming that enote was referenced by the input’s membership proof. This problem may

extend to multi-input transactions if the ‘low bits’ of the total amount are unusual (e.g.

because one input has a fingerprint recorded in low bits of its amount value, and other

inputs’ amounts have low bits set to zero).

Even if the amount isn’t unusual, if the anonymity set size of membership proofs is relatively

small, then there is a very low probability that the observer’s enote was randomly selected

as a decoy and just happened to have the same amount as the real enote being spent.

2. If tc,1 is used as a secret input to a proof (e.g. a discrete log proof of the commitment to

zero C ′ −C with respect to G), then the observer may be able to guess and check the proof

structure with known values of x1 to see if tc,1 =
∑p

t=1 yt + pr − x1 is in fact that secret

input (depending on the proof structure used).5

Both problems are mitigated or solved by including a ‘change enote’ in each transaction, even if

its amount must be zero.6 A change enote is an enote the transaction author sends to himself if

the total output amount of his transaction exceeds the amount he intends to send to other people

(unavoidable if no combination of owned enotes’ amounts equals the intended total output amount

of his transaction).

5 Input proofs

Membership proofs may be implemented with any cryptographic proof that satisfies the Seraphis

protocol’s requirements. For example, a Grootle proof [9] in the squashed enote model, or a

Lelantus-Spark one-of-many proof [7] in the base enote model.

Ownership/unspentness proofs may likewise be implemented with any proof satisfying the Seraphis

protocol’s requirements. For example, a Seraphis composition proof [9].

5 For an example of where this can be a problem, CLSAG [6] and Triptych [15] both require ‘extra’ key images
computed like tcP (where P is public information). This means if the observer knows the input commitment blinding
factor (and all output commitment blinding factors), then they can identify the true spend of a 1-input transaction
via guess-and-check.

6 There are niche cases where the first problem is unsolvable. For example, the sender could allow a ‘low bit’
fingerprint to propagate from an input to an output. The observer may also be able to infer, by the mere fact an
enote he created was referenced by a membership proof, that his enote is being spent.
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6 Coinbase enotes

For a cryptocurrency to be widely adopted, observers should be able to verify that the total supply

of money matches their expectations based on coinbase enotes and transactions recorded in the

ledger.7

Let coinbase enotes have a special format. Instead of recording amount commitments, they should

record the amounts in cleartext. For a coinbase enote to be referenced in a membership proof’s

input set S, it must be ‘converted’ into a normal enote first.

Converting a coinbase enote to a normal enote is very simple.

• Set the enote’s address equal to the coinbase enote’s address: Ko
enote = Ko

coinbase.

• Set the enote’s commitment equal to an unmasked commitment to the coinbase enote’s

amount a: Cenote = aH.

When a transaction’s membership proof references enotes in the ledger, it is common to reference

them by index. Verifiers look up those indices, then {squash and} copy the enotes they find into

S. If a verifier finds a coinbase enote at a lookup index, they should convert it into a normal enote

before {squashing it and} copying it into S.8

If a transaction spends a coinbase enote, then its enote-image’s masked amount commitment will

hide the amount involved even though the original amount had no blinding factor.

7 Transaction fees

Most cryptocurrencies have a ‘transaction fee’. Each transaction must send a small fee to a

third-party. Fees disincentivize creating large numbers of transactions that excessively burden the

network and node operators. They also allow transaction authors to prioritize their transactions.

Transactions with high fees will typically be added to the ledger faster than those with low fees if

the p2p network is congested.

To ensure fees are publicly verifiable, they are usually recorded in cleartext in transactions. Fees

are then converted into enotes and added to the ledger at a later date. The rules around this

conversion process are minutiae defined by each cryptocurrency.9

Fees must be incorporated into amount balances. Transaction verifiers can use the following simple

procedure.

7 Observers should also expect that coinbase enotes only appear in the ledger when well-defined rules have been
satisfied (e.g. they were created in the genesis block, or via PoW/PoS mining).

8 In practice, transaction verifiers can store converted coinbase enotes directly in/alongside a local copy of the
ledger, so they don’t have to be converted each time they are referenced by a transaction.

9 In PoW cryptocurrencies, a block’s miner typically adds the fee amounts from their block’s transactions into
their coinbase enotes (the outputs of their ‘miner transaction’) as part of their block reward (which usually includes
newly minted money).
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1. Convert a transaction’s fee amount f into an unmasked commitment: fH. Require that

0 ≤ f < 2z.

2. Test that the transaction’s amounts balance:∑
j

C ′ ?
=

∑
t

C + pr + fH

8 Jamtis

In cryptocurrencies, money may be transferred to another person by submitting a transaction

to the p2p network. The transaction should spend money owned by the transaction author and

contain new enotes owned by the recipients of that money. Ownership is implemented by con-

structing enotes using the ‘addresses’ of intended owners. An enote can only be spent when the

owning address’s private keys are known. Jamtis [18] is a Seraphis-compatible address scheme

with various useful properties that will be explored throughout this section.

8.1 Jamtis private keys and public addresses

Jamtis addresses are derived from a hierarchy of private keys. The utility of this hierarchy will be

discussed in Section 8.6.

8.1.1 Jamtis core

Jamtis begins with two root private keys.10

• Master key: km ∈R Zl

• View-balance key: kvb ∈R Zl

From the view-balance key we derive the following:11

• View-received key: dvr = Hn
vr(kvb)

10 The view-balance key is not required to be derived from the master key for two primary reasons. Firstly, users
may have pre-existing key pairs that they want to re-use in Seraphis. Secondly, in multisignature schemes it is not
feasible to derive anything from the master key since no single party knows its full value.

11 The Jamtis keys dfa, dvr, D
j
fa, D

j
vr, D

j
base may be defined on a separate elliptic curve from G, for example with

X25519 for maximized ECDH performance. For simplicity in this document we assume the primary curve G is used.
If those keys are defined on a group with cofactor h > 1, then the cofactor should be included as a scalar multiplier
in sender receiver secrets, for example Dd

fa = h ∗Dfa ∗De. If this is not done, then a malicious transaction author
can determine if the recipient’s relevant ECDH secret key is a multiple of h (or any divisor of h) or not. They
only need to set, for example, De = De + Dhf , where Dhf is a point in the subgroup of order h (or a factor of
h). If the recipient successfully performs balance recovery on the enote and notifies the sender, then the sender will
know that dfa is a multiple of the subgroup order of Dhf . This is because dfa ∗Dhf == I when dfa is a multiple
of Dhf ’s subgroup’s order, allowing the recipient to successfully reproduce Dd

fa only in that case. Including h in
sender-receiver secrets means cofactor-subgroup points will always be ‘canceled out’ if they are present in ECDH
base keys.
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• Filter-assist key: dfa = Hn
fa(dvr)

• Generate-address secret: sga = Hga(dvr)

• Cipher-tag secret: sct = Hct(sga)

We now compute the base public keys from which Jamtis addresses will be built:

• Base spend pubkey: Ks = kvbX + kmU

• Exchange Base pubkey: Dbase = dvrG

• View-received pubkey: Dvr = dvrDbase

• Filter-assist pubkey: Dfa = dfaDbase

8.1.2 Jamtis public addresses

Jamtis public addresses are derived from the Jamtis private keys and base public keys, and a

user-defined ‘address index’ j ∈ {0, 1}∗. The address index is ciphered and included alongside the

public address keys.

At the heart of a Jamtis public address is an ‘address-index generator’ secret:

sjgen = Hgen(sga||j)

From the generator secret we derive three spendkey extensions

kjg = Hn
seg(Ks||j||sjgen)

kjx = Hn
sex(Ks||j||sjgen)

kju = Hn
seu(Ks||j||sjgen)

and one address private key:

dja = Hn
ap(Ks||j||sjgen)

The rationale for binding to j twice (directly and via sjgen) and to Ks is discussed in Appendix

A.2.

We define the Jamtis public address keys as follows:

Kj
s = kjgG+ kjxX + kjuU +Ks

Dj
fa = dja ∗Dfa

Dj
vr = dja ∗Dvr

Dj
base = dja ∗Dbase

The index is ciphered as Ciph[sct](j) to give the address tag:

addr tagj = Ciph[sct](j)

A full Jamtis public address is the tuple [Kj
s , D

j
fa, D

j
vr, D

j
base, addr tagj ].



8 JAMTIS 9

8.2 Jamtis sender-receiver secret derivation

Enote owners would like to discover the enotes they own in the ledger, read the amounts in those

enotes, reconstruct commitments in order to perform balance proofs in new transactions, and learn

enough secret key material in enote addresses so they can construct key images.

The answer first pioneered by CryptoNote [20] for privacy-focused transaction protocols depends

on a Diffie-Hellman shared secret between the sender and receiver of an enote. Jamtis evolves

that approach by using two Diffie-Hellman shared secrets Dd
fa, D

d
vr and two high-level sender-

receiver shared secrets ssr1 , ssr2 . The two high-level secrets are derived together using two separate

derivation paths depending on the enote type.

8.2.1 Diffie-Hellman derived keys Dd
fa and Dd

vr

At the core of Jamtis enote construction is an enote ephemeral private key r ∈R Zl and associated

enote ephemeral public key De. The value De is recorded alongside a Jamtis enote for use by the

enote’s owner.

As we will see, an enote owner can always use their filter-assist key dfa and view-received key dvr
with De to recover the Diffie-Hellman derived keys Dd

fa and Dd
vr:

Dd
fa = dfaDe

Dd
vr = dvrDe

There are two possible ways to compute De, D
d
fa, and Dd

vr during transaction construction.

Standard

For most enotes, De, D
d
fa, and Dd

vr will be computed directly from the recipient’s address keys.

De = rDj
base

Dd
fa = rDj

fa

Dd
vr = rDj

vr

In this case, Dd
fa = rDj

fa = rdfaD
j
base = dfaDe. Likewise, D

d
vr = rDj

vr = rdvrD
j
base = dvrDe.

Shared-De optimization

If a transaction contains one recipient and one additional enote sending funds to the transaction

author (e.g. a leftover/change amount from the difference between inputs, the one recipient, and

the transaction fee), then that additional ‘selfsend’ enote can share the other enote’s De.

In this case, the transaction author knows his own dfa and dvr keys, so he can define the following:

Dself
e = Dother

e

Dd
fa = dfa ∗Dself

e

Dd
vr = dvr ∗Dself

e
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which ensures he can properly recompute Dd
fa and Dd

vr during balance recovery.

A transaction that uses the shared-De optimization only needs to store one copy of De.
12

8.2.2 Secret uniqueness: input context

To ensure uniqueness of enote components between transactions, we will bind the secret ssr1 to the

‘input context’ of the transaction it will be used in. Transaction inputs are never repeated in the

ledger, which guarantees uniqueness of ssr1 even if r is repeated.

• Coinbase txs: input context = Hicc(block height)

• Normal txs: input context = Hicn(K̃1||...||K̃m)

To further ensure uniqueness within a transaction, transaction verifiers must mandate that all

values De in a transaction are unique (with a further caveat for selfsend enotes mentioned in

Section 8.2.4).13

8.2.3 Secrets ssr1 , ssr2 (derivation path 1): normal enotes

For normal enotes that transfer funds to another person, the two sender-receiver secrets ssr1 , ssr2
are derived from Dd

vr and r.

Sender

ssr1 = Hsr1n(D
d
vr||De||input context)

ssr2 = Hsr2n(r ∗G)

Recipient

ssr1 = Hsr1n(D
d
vr||De||input context)

ssr2 = Hsr2n(1/(d
j
a ∗ dvr) ∗De)

The second secret ssr2 is computed from an ‘inverse’ Diffie-Hellman exchange involving the recip-

ient’s address key Dj
base = (dja ∗ dvr) ∗ G. The usefulness of ssr2 will be explored in Sections 8.4.3

and 8.6.

8.2.4 Secrets ssr1 , ssr2 (derivation path 2): selfsend enotes

When sending funds to himself, a transaction author derives the two sender-receiver secrets ssr1 , ssr2
from De and his Jamtis key kvb. The secrets can be recomputed in the same way during balance

recovery.

12 A major advantage of sharing De is you only need to derive Dd
fa and Dd

vr once instead of twice. If most
transactions in the ledger have two outputs, and all two-output transactions use the shared-De optimization, then
there will be a substantial reduction in Dd

fa and Dd
vr computations relative to a scenario with no De sharing.

13 It is safe for multiple De in a transaction to be cofactor-variants of the same point, since we bind ssr1 to the
byte-wise representation of De.
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As we will see in Section 8.6.1, providing a separate derivation path for selfsend enotes improves

the privacy attributes of balance recovery when dfa is given to a semi-trusted third party.

It is possible to define multiple different selfsend enote types (e.g. change enotes, churn enotes)

using different derivations for ssr1 and ssr2 . There are two classes of selfsend enotes: ‘exclusive’ and

‘auxiliary’. There should be exactly one exclusive selfsend enote per transaction, and there may

be any number of additional auxiliary selfsend enotes. The reason for this is discussed further in

Section 8.3.5. For convenience, we domain-separate ssr2 based on the different selfsend enote types

τ , and ssr1 on a boolean value is aux.

ssr1 = Hsr1s[is aux](kvb||De||input context)

ssr2 = Hsr2s[τ ](kvb||ssr1 )

In this case ssr2 does not rely on the inverse Diffie-Hellman secret rG, which simplifies the shared-

De optimization because there is no need for the value (1/(dja ∗ dvr)) ∗Dother
e when building the

shared-De selfsend enote.

Uniqueness: To ensure uniqueness of ssr1 and ssr2 when De is shared between two enotes, trans-

action authors must avoid sharing De between two selfsend enotes of the same class (i.e. if there

are two selfsend enotes in one transaction, then one must be exclusive and the other must be

auxiliary). The secrets will be unique in the case of De shared between a plain and a selfsend

enote since the ssr1 derivation will be different for each.

Optimized design: Selfsend enote secrets can be computed with three hash operations (includ-

ing the input context), whereas normal enote secrets require three hash operations, one scalar

inversion, and three ECDH exchanges.

8.3 Jamtis enote construction

Jamtis enotes are constructed in a linear fashion from Dd
fa, D

d
vr, s

sr
1 , and ssr2 .

8.3.1 Amount commitment and encoded amount

In order for an enote’s owner to recover the enote amount a and recompute the amount blinding

factor x, we encode the amount and store it inside the enote along with the amount commitment

C, and compute x deterministically.

C = Hn
bf (s

sr
1 ||ssr2 ) ∗G+ a ∗H

aenc = a XOR Hea(s
sr
1 ||ssr2 )

where x = Hn
bf (s

sr
1 ||ssr2 ) can be recomputed by the enote’s owner.

8.3.2 Onetime address

Enote addresses are called ‘onetime addresses’ because they can only be used to produce one key

image, and hence should only appear once in the ledger under normal circumstances (discussion
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about attacks related to onetime addresses in Section 8.4.1). An enote’s onetime address is:

Ko = Hn
kog(K

j
s ||ssr1 ||C) ∗G+

Hn
kox(K

j
s ||ssr1 ||C) ∗X+

Hn
kou(K

j
s ||ssr1 ||C) ∗ U +Kj

s

We will justify the use of three extensions in Section 8.7. We explain why binding the extensions to

Kj
s is important in Appendix A.3. Onetime addresses do not bind to ssr2 so they may be efficiently

recovered with only one ECDH exchange using dvr (see Section 8.5).

Binding to C for uniqueness

Onetime addresses are bound to an input context via ssr1 so that they will be unique in the

ledger, however acquiring an input context requires access to the ledger. If access to the ledger is

intermediated by a semi-trusted third party, it is possible for that party to send false input contexts

to a person engaging in balance recovery. If that third party collaborates with a transaction

author, they could cause the person doing balance recovery to identify owned enotes with duplicate

onetime addresses. To mitigate that risk, onetime addresses are bound to the amount commitment

C, ensuring that even if a person is using falsified input contexts during balance recovery, they

will only identify duplicate-Ko enotes that have the exact same amounts. This makes it safe to

completely ignore all but the oldest copy of the enote.14,15

Note that binding to C also means that selfsend enotes transitively bind to τ , ensuring Ko is fully

dependent on all enote parameters.

8.3.3 Encrypted address tag

To facilitate balance recovery, an encrypted version of the Jamtis address tag is recorded in each

enote.

addr tag enc = addr tag XOR Hate(s
sr
1 ||Ko)

We bind to Ko for robustness.16

8.3.4 Flexible view tag

As a balance recovery optimization, we compute two MAC-like hashes of Dd
fa and ssr1 called the

‘primary view tag’ and ‘complementary view tag’ [19] for normal and exclusive selfsend enotes

(auxiliary selfsend enotes instead use an ‘auxiliary view tag’). These MAC-like hashes are spliced

14 If enotes are associated with memos containing critical information, then ignoring newer duplicate-Ko enotes
may not be safe.

15 We keep track of the oldest copy instead of the newest copy in case of ledger reorganizations that remove newer
copies but leave older ones untouched.

16 It is feasible, although unlikely, that ssr1 could be re-used between separate transaction attempts using different
recipients. For example, a shared-De selfsend could use two different selfsend addresses but the same original
recipient and same enote ephemeral private key r. In that case, binding to Ko ensures different address tags won’t
be encrypted using the same secret.
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together into a fixed-size byte buffer called the ‘view tag’, which is included in enotes. A person

doing balance recovery can recompute the primary/complementary/auxiliary view tags for a given

enote and check them against the stored aggregate view tag. If the computed sub-tags don’t

match against their bit ranges in the aggregate tag, then most of the other balance recovery steps,

especially the most expensive steps, can be skipped.17

We discuss the rationale for this view tag design in Section 8.6.1. Note going forward, however,

that the primary view tag depends on dfa, while the complementary view tag depends on dvr.

Normal Enotes and Exclusive Selfsend Enotes

To make the view tag for normal and exclusive selfsend enotes, we concatenate a configurable

number of bits, npbits, from the primary view tag, to another ncbits from the complementary

view tag.18

primary view tag = Hpvt(D
d
fa||Ko)

complementary view tag = Hcvt(s
sr
1 )

With

view tag = primary view tag[ : npbits] || complementary view tag[ : ncbits]

where x[: b] means ‘get b bits of the byte-wise representation of x’.

Auxiliary Selfsend Enotes

Auxiliary selfsend enotes have a simpler view tag derivation path:

view tag = Havt(kvb||Ko)

8.3.5 Enote summary

A Jamtis enote sending funds to an address [Kj
s , D

j
fa, D

j
vr, D

j
base, addr tagj ] is therefore the tuple19

[Ko, C, aenc, addr tag enc, view tag]

The enote is associated with an ephemeral public key De, an input context, and npbits/ncbits.

8.4 CryptoNote address scheme flaws

The Jamtis design we just presented fixes four important flaws in the design of the CryptoNote

address scheme.

17 Each sub-tag of the aggregate view tag only needs to be 1 or 2 bytes to effectively amortize post-view-tag
computations.

18 Assuming that the total size of the view tag buffer is constant, ncbits equals the bit-size of the buffer minus
npbits. To reduce uniqueness from implementation differences and user choices, the value of npbits should be
enforced by either consensus or relay rules and should only be specified once per transaction.

19 A Jamtis coinbase enote will record a explicitly instead of C and aenc.
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8.4.1 Onetime address duplication

CryptoNote enotes in the ledger may contain duplicate onetime addresses even though only one

of them may be spent. There are two problems with that situation [8].

1. User wallets must track all duplicates and only consider the enotes with the highest amounts

to be spendable. Otherwise users could be tricked into ‘burning’ their own funds.

2. Protocols implemented on top of a cryptocurrency with CryptoNote addresses, such as mul-

tisignature schemes or atomic swaps, must take extra precautions to ensure money transfers

always guarantee spendability of sent funds.

Jamtis solves the duplication issue by baking an input context into enotes, as discussed in Section

8.2.2.20

8.4.2 Subaddress lookahead

A CryptoNote user may generate many ‘subaddresses’ [14] from their CryptoNote private keys, in

addition to their main CryptoNote public address.21 Much like Jamtis addresses, each CryptoNote

subaddress is derived from a user-defined index.

In CryptoNote balance recovery [20, 10], users detect an owned enote by ‘unwrapping’ the onetime

address to examine the underlying spend key, and then matching that unwrapped key against a

table of precomputed subaddresses (plus the main address). If there is a match, then the user

owns the enote. However, if an enote is owned by a subaddress not in the precomputed table,

then the enote will not be identified as owned. As a consequence, CryptoNote balance recovery is

error-prone and it is not feasible to randomly generate subaddresses.

Jamtis encrypted address tags cleanly solve this issue by enabling users to directly recover the

address indices of owned enotes during balance recovery. If the index j is sufficiently large then

addresses can be randomly generated with only negligible risk of collisions.22

8.4.3 Janus attack

CryptoNote balance recovery involves a two-part process. First is an ECDH exchange using the

CryptoNote view key to get a shared secret (much like Dd
vr and Dd

fa). Then the shared secret is

used to unwrap the spend key of the address that owns the enote (similar to Kj
s).

20 A naive solution to prevent duplicate onetime addresses would be to simply ban duplicates from appearing
in the ledger. Doing that, however, would enable malicious actors in the network to ‘kill’ in-flight transactions
by creating malicious transactions containing the honest transactions’ enotes’ onetime addresses. If the malicious
transactions are confirmed into the ledger then the honest transactions would become invalid.

21 Subaddresses are an extension on top of CryptoNote, but we consider them part of CryptoNote for simplicity.
22 An index space of 128 bits is considered sufficiently large for most use-cases [12].
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Since that two-part process is separated, it is possible for each part to be constructed from a

different subaddress. A transaction author can optimistically make an enote from two subaddresses

they suspect are owned by the same person. Their theory will be confirmed if that person notifies

the author they received the enote. This is called a ‘Janus attack’ [4].

Jamtis solves this by binding enote contents to the index j of the recipient address (see Section

8.5 for the entire balance recovery process).

1. The enote ephemeral key De depends on dja and dvr: De = rDj
base = r ∗ dja ∗ dvr ∗G

2. The recipient recovers index j by decrypting addr tag enc with Dd
vr = dvrDe (and then

deciphering the decrypted address tag).

3. The recipient recomputes onetime address Ko using Ks, j, and Dd
vr.

4. The recipient computes the second secret ssr2 from the values (1/(dja ∗ dvr)) ∗De.

The key here is in the last point. Specifically, ssr2 depends on both Dd
vr and the recovered j. If the

recovered j does not match the j′ of the key Dj′

base used to construct De = rDj′

base, then the user

will compute a different ssr2 from the transaction author.

In detail, the user will compute ssr2 with the ECDH key (1/(dja ∗dvr))∗De = r ∗ (dj
′
a /d

j
a)∗G, which

the transaction author cannot know since dja and dj
′
a are secrets.23 Therefore if a user recovers ssr2

successfully (which can be verified by reproducing C correctly), and assuming Ko was recomputed

properly, then the transaction author must have used address components derived from the same

index j.

The Janus attack is not an issue for Jamtis selfsend enotes since they are constructed with the

view-balance key. A person with the view-balance key already has the power to generate all Jamtis

addresses and decipher the address tags of existing addresses.

8.4.4 Incomplete view key

Due to how CryptoNote key images are defined [20], they can only be computed using both

CryptoNote private keys (the view and spend keys). This means a user cannot use their CryptoNote

view key in isolation to identify when their enotes are spent (by computing key images and check-

ing if they are present in the ledger). As such, the view key only has partial view access to a user’s

balance.

In contrast, Seraphis key images can be computed using the Jamtis view-balance key kvb in com-

bination with the public key kmU .24

23 Even if an attacker knows dja or dj
′

a , if they don’t know dvr then they cannot perform a Janus attack on the
unknown address because two secrets are required to translate from De to ssr2 (two out of dja, d

j′
a , and dvr).

24 In an early version of the Seraphis paper, linking tags had the form K̃ = (1/(H(ssr1 ) + kvb)) ∗G. This meant a
view-balance wallet could demonstrate the discrete log of K̃ with respect to G, allowing them to look at an enote
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8.5 Jamtis balance recovery

Jamtis balance recovery can be divided into two steps: view tag checks and enote recovery. Enote

recovery can occur via ‘normal’, ‘exclusive selfsend’, or ‘auxiliary selfsend’ paths.

8.5.1 Primary view tag check and Dd
fa

Given an enote with associated enote ephemeral key De and input context, a user who wants to

see if they own the enote begins by checking its primary view tag. This requires the user’s dfa.

1. Compute the nominal filter-assist key derivation: D′d
fa = dfa ∗De

2. Compute the nominal primary view tag: primary view tag′ = Hpvt(D
d
fa||Ko)

3. Extract the primary view tag from the view tag based on the configured bit-length npbits.

4. If primary view tag′ ̸= primary view tag then perform an auxiliary view tag check:

(a) If all other enotes in the transaction also failed the primary view tag check then ABORT.

(b) Compute the nominal auxiliary view tag: view tag′ = Havt(kvb||Ko)

(c) If view tag′ ̸= view tag then ABORT.

8.5.2 Complementary view tag check and ssr1

For enotes which passed the primary view tag check, we compute the sender-receiver secret ssr1 ,

and perform a complementary view tag check. Note that we may have to try multiple different

paths for ssr1 derivation, depending on whether the primary and auxiliary view tag checks passed.

• Normal scan: This requires dvr.

• Selfsend scan: This requires kvb.

1. Compute the first enote secret:

• Normal scan:

(a) Compute the nominal view-received derivation: D′d
vr = dvr ∗De

(b) s′sr1 = Hsr1n(D
′d
vr||De||input context)

received to the underlying master wallet, extract the linking tag, send a new enote to themselves with the same
linking tag, then spend that enote so the linking tag is added to the ledger. The original enote seen by the view-
balance wallet would be unspendable (i.e. ‘burnt’). In other words, a view-balance wallet would have the power to
destroy enotes owned by the corresponding master wallet, which is sub-optimal (our thanks to Nikolas Krätzschmar
for identifying this problem). The current linking tag construction prevents that issue by requiring knowledge of km
in order to demonstrate the linking tag’s discrete log.
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• Selfsend scan: s′sr1 = Hsr1s[is aux](kvb||De||input context)

2. Test the complementary view tag:

(a) Compute the nominal complementary view tag: complementary view tag′ = Hcvt(s
sr
1 )

(b) Extract the complementary view tag from the view tag based on the configured bit-

length ncbits.

(c) If complementary view tag′ ̸= complementary view tag then ABORT.

Note that the normal scan requires a Diffie-Helman exchange, but the selfsend scan does not. This

means that testing for a selfsend is significantly faster than testing for a normal enote.

8.5.3 Full enote recovery

Once an enote has been flagged as ‘possibly owned’, full enote recovery can proceed.

1. Compute the nominal address tag: addr tag′ = addr tag enc XOR Hate(s
′sr
1 ||Ko)

2. Decipher the nominal address index: j′ = Deciph[sct](c
′j)

With j′ in hand, the user can recompute Ko. This requires s′sr1 and the user’s sga and Ks.

1. Compute the address-index generator of j′: sj
′
gen = Hgen(sga||j′)

2. Compute the spendkey extensions of j′ for G, X, and U : kj
′

[g/x/u] = Hn
se[g/x/u](Ks||j′||sj

′
gen)

3. Compute the address spend key of j′: Kj′
s = kj

′
g G+ kj

′
x X + kj

′
u U +Ks

4. Compute the nominal onetime address extensions: k′o[g/x/u] = Hn
ko[g/x/u](K

j′
s ||s′sr1 ||C)

5. Compute the nominal onetime address: K ′o = k′og G+ k′ox X + k′ou U +Kj′
s

6. If K ′o ̸= Ko then ABORT.

Now the user is prepared to recover the enote amount.25 Selfsend scanning will iteratively test

selfsend types τ until success.

• Normal scan: This requires s′sr1 , j′, sj
′
gen, and the user’s dvr and Ks.

• Selfsend scan: This requires s′sr1 and the user’s kvb.

1. Compute the second enote secret:

25 These steps are not required for coinbase enotes, which record the amount a explicitly.
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• Normal scan:

(a) Compute the address private key of j′: dj
′
a = Hn

ap(Ks||j′||sj
′
gen)

(b) Compute the secret: s′sr2 = Hsr2n((1/(d
j′
a ∗ dvr)) ∗De)

• Selfsend scan: s′sr2 = Hsr2s[τ ](kvb||ssr1 )

2. Decrypt the nominal amount: a′ = aenc XOR Hea(s
′sr
1 ||s′sr2 )

3. Compute the nominal amount blinding factor: x′ = Hn
bf (s

′sr
1 ||s′sr2 )

4. If x′G+ a′H ̸= C then ABORT.

At this point the user is certain they own the enote. As a final step, they can compute the enote’s

key image. This requires kox, k
o
u, k

j
x, k

j
u, and the user’s kvb and kmU .

K̃ =
1

kox + kjx + kvb
∗ ((kou + kju) ∗ U + kmU)

8.5.4 Implementing balance recovery

To actually perform balance recovery, users must examine enotes and key images in the ledger.

We discuss an effective procedure for doing so.

First, we add a rule to Jamtis to ensure all transactions containing a user’s key images will have

at least one output enote that passes the view tag check with that user’s dfa.

• Rule: All transactions spending funds from a user’s wallet must contain exactly one exclusive

selfsend enote. All other selfsends must be auxiliary selfsend enotes.26

Now we define the balance recovery procedure.

1. Collect a chronologically contiguous range of transactions from the ledger. We assume the

results of scanning all prior transactions have been cached by the user.

2. Perform primary view tag checks on those transactions. Collect ‘basic records’ of enotes that

pass the checks. A basic record includes the enote, its enote ephemeral public key, its input

context, and its nominal address tag. Collect ‘auxiliary records’ of enotes that did not pass

the check, but reside in a transaction where an enote did.

Also collect the key images of transactions that contributed enotes to that basic record set.

3. Perform normal enote scanning on those basic/auxiliary records, starting with checking the

complementary/auxiliary view tag. Then we recompute Dd
fa and re-do the primary view tag

check. After that, proceed normally.

26 To satisfy this rule, it may be necessary to add a zero-change exclusive selfsend to a transaction if there is no
change enote or explicit self-spend.
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4. Mark as spent all enotes owned by the user (including cached and newly acquired enotes)

whose key images can be found in the transactions that fed enotes to the basic record set.

Flag the transactions that contain key image matches.

5. Loop until there are no flagged transactions:

(a) Perform full selfsend enote scanning on all basic records associated with the flagged

transactions. Full selfsend scanning means testing all selfsend enote types against each

basic record. We ignore the basic records’ nominal address tags since selfsends have a

separate derivation path for ssr1 .

(b) Mark as spent any selfsend enotes from the previous step whose key images can be

found in the transactions associated with the basic record set. Flag those transactions

(they may contain more selfsends).

With this procedure, we minimize the amount of work and data that needs to be handled by each

successive step.

8.6 Jamtis wallets

The Jamtis key structure and balance recovery design lends itself to a well-defined set of ‘wallet

tiers’.

• Filter-assist (dfa): Perform primary view tag checks for all enotes.

• Generate-address (sga,Ks, Dfa, Dvr, Dbase): Generate any Jamtis address for arbitrary

index j. Decipher the address index of any existing Jamtis address.

• Payment validator (dvr,Ks): In addition to the filter-assist and generate-address tier

capabilities, the payment validator can perform balance recovery for normal enotes up to

(but not including) the key image computation.

• View-balance (kvb, kmU): View all balance-related information including for selfsend enotes.

• Master (kvb, km): View the entire user’s balance and make ownership/unspentness proofs

for all enotes.

Here we see the value of dvr, which separates payment validators from the filter-assist and generate-

address wallet tiers.

8.6.1 Remote-assisted balance recovery

A user can set up a remote filter-assist wallet that passes filtered enotes to their local view-balance

wallet (or payment validator). There are several important details to highlight.
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• A filter-assist wallet has very limited information about the user’s owned enotes. It can

only perform primary view tag checks on enotes, which merely filters down the set of enotes

possibly owned by the user. Note that the granularity of primary view tag checks is controlled

by npbits. If npbits is small then the filter will catch many enotes, which provides a larger

anonymity pool for users, but means that those wallets will have higher bandwidth and

computational requirements. The converse is also true: when npbits is large, then the filter

won’t catch as many enotes, which is worse for anonymity, but allows for lighter loads.

Note further that even if a transaction contains multiple self-sends, the filter-assist wallet will

only see a primary view tag match for one of them (unless another one randomly matches).

This means transactions with multiple selfsends are indistinguishable from those without.

• A filter-assist wallet only has to transmit enotes and key images from transactions with at

least one primary view tag match to the user. Note that all enotes in a transaction with a

primary view tag match must be sent due to the possibility of auxiliary view tag matches

among the other enotes.

This amounts to a substantial relative reduction in data that a user needs to access compared

to the remote wallet, even if primary view tags are only 8 bits (a reduction of about 128:1

taking into account that most transactions have two enotes).

• The first step that a user needs to do to process an enote received from a filter-assist wallet

is check the auxiliary and complementary view tags.

Complementary view tags require a Diffie-Hellman exchange to compute Dd
vr, which means

enote scanning for the user has similar cost on a per-enote basis to the filter-assist wallet

(per enote that passed a primary view tag check).

Auxiliary view tag checks only require a hash, making it relatively cheap to check for addi-

tional selfsends.

The result is highly constrained information access for the remote filter-assist wallet and speedy

balance recovery for the user.

8.7 Forward secrecy against DLP-solver

Jamtis is designed to offer conditional forward secrecy against a DLP-solver. This includes pro-

tecting amounts, the true signers in membership proofs, key image origins, and the identities of

enote owners/recipients. Forward secrecy is conditional on the DLP solver not gaining access to

a user’s public addresses and their generate-address secret.27

8.7.1 Public address access

A DLP solver with a user’s public Jamtis address can recover the user’s view-received key and

identify all normal enotes owned by that address and their amounts.

27 Note that tevador, the author of Jamtis, has proposed embedding a post-quantum ‘switch’ into Seraphis that
could be activated if a quantum adversary became credible [17].
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• The adversary can solve for dvr in dvrD
j
base = Dj

vr and use it to unwrap candidate onetime

addresses to check if the unwrapped spend keys match the address’s Dj
s.

• The adversary can solve for r in rDj
base = De to compute the key rG, which allows the ssr2

of normal enotes to be computed.

If at least one of those normal enotes is spent, then the DLP solver can additionally compute all

of the user’s key images. More precisely, they can generate key image candidates derived from all

on-chain key images, among which will be the real key images - if two normal enotes are spent

then the candidate set collapses.

• The masked address decomposition of a spent Seraphis enote can be recovered by a DLP

solver from the ownership/unspentness proof. This means the values kox + kjx + kvb and

kou + kju + km of the original onetime address will be known to the adversary.

Suppose the compromised user has spent at most one enote owned by each address known

to the adversary. The adversary can use the decomposition values from all proofs in the

ledger in combination with the kox, k
o
u of that user’s normal enotes to uncover nominal values

kjx + kvb and kju + km for each spent enote in the ledger. Some of those pairs will correspond

to the user’s spent enotes. He can then combine those pairs with the kox, k
o
u of other normal

enotes owned by addresses known to him to compute sets of candidate key images, among

which will be the real ones for all of the compromised enotes.

However, if two enotes are spent out of the user’s compromised enote set for a particular

address, then the adversary will recover the same pair kjx + kvb and kju + km from both of

those enotes, allowing the candidate set for that address to collapse.

A DLP solver cannot figure out anything about a user’s selfsend owned enotes (aside from per-

forming primary view tag checks if their filter-assist key is known). The DLP solver also cannot

look at a set of addresses to learn anything about addresses not in that set.

8.7.2 Generate-address secret access

If the DLP solver gets access to a user’s generate-address secret in addition to an address that

owns spent enotes, then they can unravel the user’s entire key structure (including the master

key).

• This trivially follows from knowing kjx+kvb and kju+km, as detailed in the previous section.

8.7.3 Unknown users

DLP solvers cannot learn anything about users whose addresses they don’t know (aside from

weakening their membership proofs by learning the true spends of compromised users). We support

that claim with the following observations about Jamtis.
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• Onetime addresses include sender extensions and address index extensions on all generators,

ensuring no private keys are directly exposed to a DLP solver by ownership/unspentness

proofs.

• Enote ephemeral public keys use a uniformly distributed value r, and the discrete log of De

with respect to a public generator is never used.

• The Pedersen commitments used for amounts are perfectly hiding.

• The masked addresses and amount commitments in enote images are masked with uniformly

distributed values tk and tc, ensuring the original enotes are perfectly hidden.

• Seraphis membership proofs are required to have [todo: relevant security properties].

8.8 Seraphis requirement satisfaction

Jamtis fully satisfies the information recovery requirements specified by Seraphis [9].

• Secret recovery: As detailed in Section 8.5.3, the values ko[g/x/u], a, and x will be recovered

during balance recovery.

• Enote reproduction: As detailed in Section 8.5.3, recomputing Ko and C is required to

successfully complete balance recovery on an enote.

• Enote privacy: Since Jamtis enotes are constructed from ECDH secrets and the hidden

private key kvb, observers who know none of a user’s Jamtis private keys cannot uncover any

information about that user’s enotes’ contents. [todo: this requires a substantial proof]

9 Non-prime groups

This paper requires G to be a prime group, however in practice it may be a prime subgroup of a

non-prime group. One prominent example, used in CryptoNote [20] and its progeny, is the elliptic

curve Ed25519 [1], which has order 8 ∗ l (l is a prime number ≈ 2252). CryptoNote enotes and

proofs are designed to only use curve points from the subgroup of size l.

All uses of curve points in an implementation of Seraphis based on a non-prime group must

take into account the possibility that a point recorded in a transaction may not be in the prime

subgroup.

In particular, linking tags recorded in enote-images must be points in the prime subgroup [5], since

checking if a linking tag has appeared in the ledger usually involves a byte-wise lookup. There

are several ways to ensure non-prime points are detected by transaction validators. From least to

most efficient, they are:

• Test l ∗ K̃ ?
= I, where I is the group’s identity element.
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• Let the public key recorded in a transaction be Kprecomputed = (1/h) ∗ K, where h is the

curve’s cofactor (8 in the case of Ed25519). When validating a transaction, compute K =

h ∗Kprecomputed to recover the point.

• Use an encoding abstraction such as Ristretto [3] that ensures all points recorded in a

transaction (in enotes, enote-images, and proof elements) are in the prime subgroup.28

10 Modular transaction building

Seraphis, like other transaction protocols inspired by RingCT, does not include any advanced

‘scripting’ capabilities such as those found in Bitcoin. However, a Seraphis implementation can be

designed to permit relatively more modular transaction building compared to RingCT and other

protocols. A modular design enables membership proof deferment, membership proof delegation

and transaction chaining.

• Membership proof deferment means delaying membership proofs to the very last step of

transaction construction.29

• Membership proof delegation means allowing a third party to construct an enote’s member-

ship proof.

• Transaction chaining is the ability to construct a transaction B that spends an enote produced

by transaction A, before A has been added to the ledger.

Below is a transaction-building procedure that supports those techniques.

1. Define the transaction’s output enotes and any miscellaneous memos.

2. Construct ownership/unspentness proofs for each input’s enote-image. Each proof should

sign a message containing all of the transaction’s key images, output enotes, and memos,

and the transaction fee. Cache the values tc and tk for each input.

3. Construct a balance proof for the transaction.

• The individual who performs/completes a balance proof must know the blinding factors

and amounts of all input enote-images and output enotes.

4. Construct range proofs for all of the output enotes’ amount commitments {and for the input

enote-images’ masked amount commitments}.
28 A Ristretto point will fail to decompress into a full elliptic curve point if it is not in the prime subgroup.
29 Deferring membership proofs allows a transaction author to minimize timing information about when they

constructed their transaction that might be leaked by membership proofs. This is especially advantageous for
multisignature schemes where a transaction may take days or weeks to be constructed.
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5. Construct a membership proof for each input using the cached tc and tk values. Member-

ship proofs should not sign any transaction material other than material directly related

to the membership proof (e.g. the relevant enote-image and ledger references to the enotes

referenced by the proof). Membership proofs and ownership/unspentness proofs should not

share any Fiat-Shamir challenges.

With this procedure, membership proof deferment is trivially satisfied. Delegation is achieved

by only needing the values tc,j , tk,j , Cj , and Ko
j to construct membership proofs. Transaction

chaining is possible because the first four steps can be executed even if the inputs being spent

don’t exist in the ledger.

11 Other recommendations

The recommendations in previous sections are not exhaustive. Here are some other ideas we think

implementers should consider.

• Semantic constraints: Transaction validation rules should contain as many ‘semantic

constraints’ as possible. A semantic constraint is one that limits variance in how a transaction

may be constructed, without affecting the underlying security model. For example, how

inputs and outputs are sorted, byte serialization, memo field format/usage, etc.

Reducing/eliminating semantic variance reduces the likelihood of ‘implementation finger-

printing’. If two transaction-builder implementations use different semantic conventions,

then observers can easily identify what software was used to make a given transaction. This

can have undesirable privacy implications for users.

• Decoy selection: Membership proofs might have small reference sets relative to the ledger

size. If ‘decoy’ enotes are not selected effectively, then observers may be able to use heuristics

to gain an advantage when trying to guess the real spend in a transaction input.

Pure random selection of decoys is weak to the ‘guess-newest’ heuristic, where the ‘newest’

enote referenced by a membership proof is most likely to be the real spend. Selecting

from a gamma distribution instead is thought to better mimic the true spend distribution,

and selecting ‘bins’ (clumps) of enotes mitigates analysis that uses circumstantial timing

knowledge about a transaction. [13, 16]

• Fee granularity: If transaction fees have very high granularity then a lot of information

about a transaction author may be inferred from the fees they use (e.g. their wallet im-

plementation and when they constructed a transaction) [11]. This may be mitigated by

‘discretizing’ fee values, for example by only allowing powers of 1.5.
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A Jamtis information proofs

Jamtis is designed so users may generate proofs about various pieces of information related to

their accounts.

In this Appendix we will use Seraphis composition proofs [9] to prove knowledge of the composition

of public keys that have the construction K = aG+ bX + cU , and to prove that key images K̃ are

derived from those K. Constructing a composition proof requires a, b, c and a message m to sign,

and produces a proof σcp and key image K̃ = (b/c) ∗U . Verifying the proof requires σcp,K, K̃ and

m. [todo: abstract away the composition proof and just use ‘any proof that satisfies the Seraphis

ownership/unspentness requirements’?]

A.1 Address ownership proof

An address ownership proof proves that a Jamtis address K is owned by the prover (or that the

prover is cooperating with the owner, which is equivalent). This proof must be a Σ-protocol, which

in practice means binding to a custom message mcustom provided by the verifier. Without that

binding, a proof could be reused by someone who is not the address owner.

In this proof, K may equal the Jamtis base spend key Ks = kvbX + kmU or a full Jamtis address

key Kj
1 = kjgG+ (kjx + kvb)X + (kju + km)U .

Since K might have no G component, we include an offset on G in the proof.

Prover

1. Compute proof offset kg,o = Hn
ao(K).

2. Create σcp and K̃ from Ko = kg,oG+K and mcustom.

An address ownership proof is the tuple Ωao = [mcustom,K, K̃, σcp].

Verifier

Given a proof Ωao:

1. Check that mcustom and K match the expected values.

2. Compute proof offset kg,o = Hn
ao(K).

3. Verify σcp using Ko = kg,oG+K and the provided K̃,mcustom.
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A.2 Address index proof

An address index proof proves that a Jamtis address key Kj
1 was constructed from an index j.

Prover

Construct the proof tuple Ωai = [Ks, j, s
j
gen,K

j
1 ].

Verifier

Given a proof Ωai:

1. Check that Kj
1 matches the expected value.

2. Compute the spendkey extensions of j for G, X, and U : kj[g/x/u] = Hn
se[g/x/u](Ks||j||sjgen)

3. Compute the nominal address spend key: K ′j
1 = kjgG+ kjxX + kjuU +Ks

4. Verify that K ′j
1

?
= Kj

1 .

Jamtis design comment

Here we see that sjgen hides sga from the verifier, and the fact it is bound to j prevents the verifier

from using it to create other addresses. We also see that explicitly binding kj[g/x/u] to j allows

address index proofs to demonstrate that Kj
1 has a relationship with j.

Binding kj[g/x/u] to Ks is required so you cannot make an address index proof for an arbitrary j′

on any arbitrary key Kj”
1 [todo: formalize this security property]. Binding to Ks also allows a user

to combine address index proofs for many j with a single address ownership proof on Ks. This

could allow a generate-address Jamtis wallet to create address index proofs for arbitrary indices

and combine them with an address ownership proof on Ks provided by the master wallet.

A.3 Enote ownership proof

An enote ownership proof proves that an enote with [Ko, C] is owned by a key K. It can be

combined with an address ownership proof on K to demonstrate that the prover can spend the

enote.

An enote ownership proof may be constructed by the enote’s author or its owner.

Prover

1. Compute the first sender-receiver secret using the appropriate derivation path for K: ssr1 .
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The proof is Ωeo = [K,Ko, C, ssr1 ].

Verifier

Given a proof Ωeo:

1. Check that Ko and C match the expected values.

2. Compute the onetime address extensions: ko[g/x/u] = Hn
ko[g/x/u](K||ssr1 ||C)

3. Compute the nominal onetime address: K ′o = kogG+ koxX + kouU +K

4. Check that K ′o ?
= Ko.

Jamtis design comment

Here we see that binding ko[g/x/u] to K allows enote ownership proofs to demonstrate a relationship

between K and Ko.

Note that this proof is agnostic to the derivation path for ssr1 , meaning the verifier has no way to

know the enote’s type (whether it’s normal or a selfsend type). He also does not know if the proof

was made by the enote’s author or its owner.

A.4 Enote amount proof

An enote amount proof proves that an amount commitment C = xG + aH binds an amount a.

The proof is simply Ωea = [C, x, a], which is verified by testing xG+ aH
?
= C.

A.5 Enote key image proof

An enote key image proof proves that a key image K̃ is derived from a onetime address Ko.

Prover

1. Create a composition proof on Ko: σcp with a null message m0.

The proof tuple is Ωeki = [Ko, K̃, σcp].

Verifier

Given a proof Ωeki:

1. Check that Ko and K̃ match the expected values.

2. Verify that K̃ is a canonical group element.

3. Verify σcp with the given Ko and K̃ and null message m0.
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A.6 Enote unspent proof

An enote unspent proof proves that a key image K̃ was not derived from a onetime address Ko.

This can be used to show that transactions in the ledger did not spend a particular enote.30

For this proof we need a matrix proof θ (see Appendix B).

Prover

Given a test key image K̃ ′ and a onetime address Ko = kgG + kxX + kuU where kg, kx, ku are

known to the prover:

1. Compute the following:

Kg = kgG

Kx = kxX

Ku = kuU

K̃ ′
x = kxK̃

′

2. Create a matrix proof demonstrating the discrete log kg of Kg with respect to G: θg.

3. Create a matrix proof demonstrating the discrete log kx of Kx and K̃ ′
x with respect to X

and K̃ ′: θx.

4. Create a matrix proof demonstrating the discrete log ku of Ku with respect to U : θu.

The proof tuple is Ωeu = [Ko, K̃ ′, K̃ ′
x, θg, θx, θu].

Verifier

Given a proof Ωeu:

1. Check that Ko and K̃ ′ match the expected values.

2. Check that Ko ?
= Kg +Kx +Ku.

3. Verify the matrix proofs θg, θx, θu.

4. If K̃ ′
x

?
= Ku then K̃ ′ is the key image of Ko.31

30 Credit for the design of this proof belongs to pseudonymous Monero contributor dangerousfreedom.
31 The verifier must ensure that K̃′

x and Ku are canonical group elements.
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A.7 Transaction funded proof

A transaction funded proof proves that the prover owns the enote that has key image K̃. This proof

must be a Σ-protocol, which in practice means binding to a custom message mcustom provided by

the verifier. Without that binding, a proof could be reused by someone who does not own the

proof enote.

A transaction funded proof can be used to show that the prover contributed funds to a transaction.

Importantly, the enote used in the proof is not exposed to the verifier. This means the amount in

the enote is also not exposed. The prover can expose that amount without exposing the original

enote by making an enote amount proof on the masked commitment of the relevant transaction

input (assuming they cached the blinding factor tc, otherwise they would need to make an enote

amount proof on the original enote’s amount commitment).

Prover

Given a key image K̃ of a onetime address Ko owned by the prover, and a message mcustom:

1. Generate a random mask tk ∈R Zl and compute K ′ = tkG+Ko.

2. Make a composition proof on K ′: σcp.

The proof tuple is Ωtf = [mcustom,K ′, K̃, σcp].

Verifier

Given a proof Ωtf :

1. Check that mcustom and K̃ match the expected values.

2. Verify σcp on the given mcustom,K ′, K̃.

A.8 Enote sent proof

An enote sent proof proves that an enote with amount a and onetime address Ko was sent to an

address K.

This is trivially achieved with an enote ownership proof Ωeo and enote amount proof Ωea. The

verifier should expect that the two proofs use values of Ko and C that come from the same enote.

A.9 Reserved enote proof

A reserved enote proof proves that an enote with onetime address Ko is owned by an address K,

has amount a, has key image K̃, is onchain, and is unspent.

Prover

Given an enote owned by the prover:
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1. Create an enote ownership proof: Ωeo.

2. Create an enote amount proof: Ωea.

3. Create an enote key image proof: Ωeki.

4. Identify the enote’s index in the ledger: i.

The proof tuple is Ωre = [Ωeo,Ωea,Ωeki, i].

Verifier

Given a proof Ωre:

1. Look up the enote values [Ko, C] in the ledger using i. Expect those values match with each

of the sub-proofs.

2. Check that i matches the expected value (or, conversely, that the recovered values [Ko, C]

match their expected values).

3. Check the sub-proofs Ωeo,Ωea,Ωeki.

4. Check that the key image K̃ in Ωeki does not exist in the ledger.

A.10 Reserve proof

A reserve proof proves that the prover has at least v =
∑

a unspent funds in the ledger. This proof

must be a Σ-protocol, which in practice means binding to a custom message mcustom provided by

the verifier. Without that binding, a proof could be reused by someone who does not own the

reserved funds.

Prover

Given a set of n enotes and the m Jamtis addresses that own them, and a custom message mcustom:

1. Randomize the order of the proof enotes.

2. Make reserved enote proofs for all of the enotes: {Ωre}n.

3. Make address ownership proofs for all of the addresses that own enotes in the reserve proof:

{Ωao}m. Use the custom message mcustom.

The proof tuple is Ωrp = [{Ωre}n, {Ωao}m,mcustom].

Verifier

Given a proof Ωrp:
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1. Check that mcustom matches the expected value.

2. Verify the address ownership proofs {Ωao}m using the message mcustom.

3. Verify the reserved enote proofs {Ωre}n using the addresses found in {Ωao}m.

4. Verify that the enotes in {Ωre}n are in the ledger and unspent.

(a) Use the ledger indices i to obtain copies of enotes from the ledger, then check that their

values match with {Ωre}n.

(b) Look up each reserved enote’s key image K̃ in the ledger to check if the enotes are

unspent as expected (the key images can be found in the enote key image sub-proofs).

The verifier can sum together amounts a stored in the enote amount sub-proofs in {Ωre}n in order

to get the total amount v that is reserved by the prover.

Note that a valid reserve proof may become invalid immediately after verification, since the enotes

referenced in the proof may be spent at any time.

B Matrix proof

We present an extended Schnorr-like proof for proving knowledge of discrete logs in a two-

dimensional matrix between a vector of private keys and a vector of base keys. The powers-of-µ

aggregation technique used here is inspired by [15].

B.1 Construction

Our proof is a Schnorr-like Σ-protocol between prover and verifier.

Suppose the prover has keys ki for i ∈ 0, ..., N − 1, and is given base keys Bj for j ∈ 0, ...,M − 1.

Let him compute the public key matrix Mi,j = ki x Bj for all i, j.

1. The prover generates random scalar α ∈R Zl.

2. The prover computes Aj = αBj for all j. He sends all Bj , Aj , and M to the verifier.

3. The verifier generates random aggregation factor µ ∈R Zl and random challenge c ∈R Zl and

sends them to the prover.

4. The prover computes aggregate response r and sends it to the verifier (we use exponents of

µ here).

r = α− c ∗
N−1∑
i=0

µi ∗ ki
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5. The verifier computes

A′
j = rBj + c ∗

N−1∑
i=0

µi ∗M[i][j]

for all j and checks A′
j

?
= Aj .
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